
Full Stack CICD of
Kubernetes
Microservices using
DevOps and IaC

Isaac Johnson @Medtronic

About Me
- Originally from Minnesota

- San Diego 2010-2017.
- Family guy who really misses movies at the Alamo Drafthouse
- Enjoys camping, fishing and being outdoors
- Death Wish Coffee and insanely spicy foods
- In free time, creates courses for WhizLabs on DevOps
- Started Career at Control Data
- Principal SW Engineer at Medtronic

- however, I’m Cloud Solutions Architect at heart

Disclaimer

The views and opinions expressed in this Open Source North talk are those of
the authors (Isaac Johnson) and do not necessarily reflect the official policy or
position of his employer, family, friends, denomination, country, place of
origin, government, or pretty much anyone else.

Any content provided by Isaac Johnson are of his opinion and are not intended
to malign any religion, ethnic group, club, organization, company, individual
or anyone or anything. These opinions are not that of Medtronic. In fact,
chances are they are well intentioned but likely flawed in some fashion by years
of high test coffee consumption and EDM piped through headphones at
ridiculous decibels.

Problem Statement
We need to create a full containerized microservice platform using
Kubernetes.

We need to use Azure DevOps but prefer to leverage Open Source
solutions.

We need to document all that we do (so that we may scale)

We want corn fields, not flower boxes (for my Vegan friends)

We will make mistakes: We want to fail fast and alert quickly.

We want to leverage PaaS and SaaS. D
es

ire
s

 R
eq

ui
re

m
en

ts

Proposed Solution

● Azure DevOps YAML Pipelines.
○ We should treat our build layer with the same review and policy

rigor as our running code.

● Azure VMSS Agent pools and Azure Pipeline Pools
○ No special build agents that have been hand altered

● Azure Key Vault for Secrets
○ Leverage via YAML tasks and “Library” for classic pipelines

● Azure Kubernetes Service with AAD RBAC
○ Integrate with existing ID Provider

● ACR for Container and Helm storage
● Hashi Terraform for IaC layer

In the beginning...

When Automations Fall Down...

customer
customer

customer

Mistakes…
Mistakes…

Mistakes…

automation

Queue for
1..n

Queue for
1..n

Pipelines running: 1 10 20
 10 100 2000

Rethinking things
Automation

TemplatesSemaphore

Unique
logic

Semaphore: variable or
abstract data type used to
control access to a common
resource by multiple
processes and avoid critical
section problems in a
concurrent system such as a
multitasking operating
system

Templates: define
reusable content, logic, and
parameters. Templates
function in two ways. You can
insert reusable content with a
template or you can use a
template to control what is
allowed in a pipeline

Onboard
Users

New
Microservice
(Repo)

New Sonar Key

New YAML Pipeline
Onboarding

WI Query WI Query

WI Query

WI Query

Some WI Driven Automations

Semaphore
- task: AzureCLI@2

 displayName: 'Azure CLI - wiq OnboardingsToProcess'

 inputs:

 azureSubscription: 'DevOps Environment (f492bf32-ca57-4f93-97a2-8c7bc99ffd48)'

 scriptType: bash

 scriptLocation: inlineScript

 inlineScript: 'az boards query --organization https://dev.azure.com/OURORG/ --id $(myWIQuerID) -o json | jq ''.[] |

.id'' | tr ''\n'' '','' > ids.txt'

 env:

 AZURE_DEVOPS_EXT_PAT: $(DevOpsPAT)

- task: AzureCLI@2

 displayName: 'Azure CLI - Pipeline Semaphore'

 inputs:

 azureSubscription: 'Azure Environment (asdf-asdf-asdf-asdf-asdf)'

 scriptType: bash

 scriptLocation: inlineScript

 inlineScript: 'az pipelines build list --project OurProject --definition-ids 1234 --org https://dev.azure.com/OURORG/ -o

table > $(Build.StagingDirectory)/pipelinestate.txt'

 env:

 AZURE_DEVOPS_EXT_PAT: $(DevOpsPAT)

https://dev.azure.com/OURORG/OurProject/_apps/hub/ms.vss-build-web.ci-designer-hub?pipelineId=1234&branch=wia-processusers

A WI Query into just a
string of CSV

Check the states of
running instances of this
pipeline

Setting up CSV/IDs
 - bash: |

 #!/bin/bash

 set +x

 # take comma sep list and set a var (remove trailing comma if there)

 echo "##vso[task.setvariable variable=WISTOPROCESS]"`cat ids.txt | sed 's/,$//'` > t.o

 set -x

 cat t.o

 displayName: 'Set WISTOPROCESS'

 - bash: |

 set +x

 export IFS=","

 read -a strarr <<< "$(WISTOPROCESS)"

 # Print each value of the array by using the loop

 export tval="{"

 for val in "${strarr[@]}";

 do

 export tval="${tval}'process$val':{'wi':'$val'}, "

 done

Take IDs from our
WI Query as a
CSV and make an
AzDO Var

Turn a CSV string
into JSON block:
processXX{wi:XX}

 Using Semaphore if [["$(WISTOPROCESS)" == ""]]; then

 echo "##vso[task.setvariable variable=mywis;isOutput=true]{}" > ./t.o

 else

 echo "##vso[task.setvariable variable=mywis;isOutput=true]$tval" | sed 's/..$/}/' > ./t.o

 fi

 # regardless of above, if we detect another queued "notStarted" or "inProgress" job, just die.. don't double process

 # this way if an existing job is taking a while, we just bail out on subsequent builds (gracefully)

 export tVarNS="`cat $(Build.StagingDirectory)/pipelinestate.txt | grep -v $(Build.BuildID) | grep notStarted | head -n1 | tr -d

'\n'`"

 export tVarIP="`cat $(Build.StagingDirectory)/pipelinestate.txt | grep -v $(Build.BuildID) | grep inProgress | head -n1 | tr -d

'\n'`"

 if [["$tVarNS" == ""]]; then

 echo "No one else is NotStarted"

 else

 echo "##vso[task.setvariable variable=mywis;isOutput=true]{}" > ./t.o

 fi

 if [["$tVarIP" == ""]]; then

 echo "No one else is InProgress"

 else

 echo "##vso[task.setvariable variable=mywis;isOutput=true]{}" > ./t.o

 fi

 set -x

 cat ./t.o

 - job: runner

 dependsOn: parse_work_item

 strategy:

 matrix: $[

dependencies.parse_work_item.outputs['mtrx.mywis']]

Null JSON
on empty
set

Any other
running or
queued
pipeline,
then
empty this
one (make
it a no-op)

Matrix on
JSON (0..n)

A typical IaC Repo
OurProjectAKS

● configure/
○ istio/
○ 010-cluster-roles.yaml
○ 020-companyspecific.yaml
○ 030-azdoagents.yaml
○ 040-aad-groups.yaml
○ 050-nginx-ingress.yaml

● docs/
○ SETUP.md

● pubs/
○ RequestAccess.md

● examples/
○ my-cluster-admin.yaml

● terraform/
○ main.tf

○ output.tf

○ variables.tf

● README.md

● azure-pipelines.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: company-cluster-admins

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: company-team-cluster-admin

subjects:

- apiGroup: rbac.authorization.k8s.io

 kind: Group

 # DL SomeTeam : dl.someteam@company.com

 name: "asdfasdf-asdf-asdf-asdf-asdfasdfasdf"

Documentation vs Publications

Docs:
● Runbooks
● How-to’s
● Legacy one-offs
● Notes on Infra setup
● Team Meetings

Pubs:
● How-to’s for users
● FAQs
● REST Docs
● More information
● Status/Dashboards

AKS ACR Process

Terraform

AzureRM
Storage

plan apply configure

Priv IAM steps

Primary ACR

New SP

Configure

Save Settings to AKV

destroy

Manual
gate

AKS

Networking

ACR

AKS ACR Process

AKS

AKS ACR Process
D

ev

 In
fr

a

K8s ACR

AKV

Azure Service
Connection

SP

MS

template

ns

E
nv

ir
o

n
m

en
t

MS

Environment vs Service Connections
Expose just 1 namespace at a time

Created interactively

Require exposed management plane

Easy to view Workloads and Services,

including those outside AzDO deploys

Developers need only to refer to

environment (no need to know KV or

access keys)

Considerations
● Kubernetes is not static: Be it EKS, GKE or AKS, “supported

versions” in a region or zone keep changing - expect to have

to upgrade.

● Consider IP Subnets when using Azure CNI or

non-kubenet networking (every pod, node, etc takes an IP).
○ If you’ve exhausted your range, you may have to create a new Node

Pool in a different subnet manually

● AKS with AAD uses your Access Token Lifetime from the

Identity Platform
○ You may not be able to change the default 1 hour timeout

Microservice
Patterns

- Requirements

- Migration to YAML

- Patterns

- Process Overview

- Scaling to multi-cloud
Scaling Microservices

Requirements

- Support Java and Dotnet microservices
- Might have different versions of java and .NET

- Auto generate .NET and Java client bindings from

Swagger (swagger gen)

- Deploy using YAML and/or Helm

- Use patterns for Sonar exclusions, Unit Tests

Phased Migration (Classic To YAML)

ClassicUI / AKS

- Task Groups

- Libraries for AKV

- Build Pipelines created Pipeline

Artifacts (drop.zip) handed off

to Release Pipelines

- Release Pipelines Gates on

Branches

- Leveraged Kubernetes Tasks

with AKV

YAML / Environments

- Multi-Stage YAML

- leveraged Templates from

controlled project

- Yaml/Helm to “Environment”

which could be gated on branch

- Secrets directly with AKV task

- YAML templates for WI

Automation for onboarding

Build Release

AzureRM

AKS

Library

AKV

YAML

environment

ns

Task Groups

Templates

Task Groups vs YAML Templates (Classic to YAML)

Task Groups

- One version, but with history

- Task Group permissions for all

task groups

- Cannot control parameters

(auto detected)
- Can set default and

description

- Project Bound

- Visual Editor

- Right click to create (easy)

YAML Templates

- Multiple Branches, history
- PR policies and easy to

contribute
- Can control parameters and

defaults
- Extends
- Conditional Logic
- Can be used for stage, job,

steps, etc
- Pull from any git provider and

local
- No visual editor*

Makeup of a Microservice

1. Helm Chart (and or/ Yaml files)

2. Service itself

3. Swagger docs (used for documentation and auto-gen)

4. Rest-generated-client (used for auto-gen specifics)

5. Pipeline file

common compile Package
(docker)

Deploy
env

Deploy
env

br1 br2

Full Process : Overview

Multi-Cloud

Following patterns allowed

us to scale

Charts/Containers/Helm

(green) are the same over

multiple environments

INFRA team creating agents

in restricted environments

(sharing them to MAIN)

Key differences
Classic UI

- Still used with Test Plans

- Easy Graphic Interface

- Managed by “Build Team”

- Control at Release
Pipelines/Gates

YAML Templates

- All modern CICD use YAML

- Empowers Developers to own

pipelines and contribute to

common Templates

- Control at Environments

Considerations
● Empowering Developers with YAML requires trust

● Requiring managed agents creates choke points
○ VMSS and Azure Pipelines scale

● Library (AKV / Group Variables) can create unnecessary

abstraction
○ Directly access with AKV

○ Minimize blast radius by more narrowly focused Vaults

○ Library requires manual selection/mapping

● Minimize use of “Build Variables” settable at build time
○ Don’t try to make AzDO into a utility Jenkins job

How do my developers
learn about Azure
DevOps?

How do we inform but
also enforce Patterns?

What is our cost
model? Do we charge
back? Can we
leverage VSE?

Where is our compute?
Where do we deploy?

How do we manage
identities?

Growth Areas
● Infrastructure

○ The right way to expose secrets to Pods

○ Service Mesh Options (Istio, Consul, etc)

○ Ingress (Istio, Nginx, Ambassador, etc)

○ Secrets Providers (Hashi Vault, or AKV)

■ Csi-secrets-store-provider-azure for AKS with managed

identity

● Promotions
○ Proper way to promote releases

■ Especially interdependent or loosely coupled to a data layer

○ Proper way to validate and test

Can I rely on a single
cloud PaaS?

What are my migration
considerations if the
offering becomes no
longer viable?

What are my methods
of control and auditing?

What if we succeed?
How does Day 2 look?
How do we scale?
What do those costs
look like?

Thank you / Questions

Slides:

https://bit.ly/2NnEeZT

- https://freshbrewed.science/OSN2021/OSN_+Full+Stack+CICD+of+Ku

bernetes+Microservices+using+DevOps+and+IaC.pdf

- https://freshbrewed.science/OSN2021/OSN_+Full+Stack+CICD+of+Ku

bernetes+Microservices+using+DevOps+and+IaC.pptx

Blog: https://freshbrewed.science

https://bit.ly/2NnEeZT
https://freshbrewed.science/OSN2021/OSN_+Full+Stack+CICD+of+Kubernetes+Microservices+using+DevOps+and+IaC.pdf
https://freshbrewed.science/OSN2021/OSN_+Full+Stack+CICD+of+Kubernetes+Microservices+using+DevOps+and+IaC.pdf
https://freshbrewed.science/OSN2021/OSN_+Full+Stack+CICD+of+Kubernetes+Microservices+using+DevOps+and+IaC.pptx
https://freshbrewed.science/OSN2021/OSN_+Full+Stack+CICD+of+Kubernetes+Microservices+using+DevOps+and+IaC.pptx
https://freshbrewed.science

